
Privacy-Preserving Graph Embedding based on Local Differential
Privacy

Zening Li

Beijing Institute of Technology

Beijing, China

zening-li@outlook.com

Rong-Hua Li

Beijing Institute of Technology

Beijing, China

lironghuabit@126.com

Meihao Liao

Beijing Institute of Technology

Beijing, China

mhliao@bit.edu.cn

Fusheng Jin

Beijing Institute of Technology

Beijing, China

jfs21cn@bit.edu.cn

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggrbit@gmail.com

Abstract
Graph embedding has become a powerful tool for learning latent

representations of nodes in a graph. Despite its superior perfor-

mance in various graph-based machine learning tasks, serious pri-

vacy concerns arise when the graph data contains personal or

sensitive information. To address this issue, we investigate and

develop graph embedding algorithms that satisfy local differential

privacy (LDP). We introduce a novel privacy-preserving graph em-

bedding framework, named PrivGE, to protect node data privacy.

Specifically, we propose an LDP mechanism to obfuscate node data

and utilize personalized PageRank as the proximity measure to

learn node representations. Furthermore, we provide a theoretical

analysis of the privacy guarantees and utility offered by the PrivGE

framework. Extensive experiments on several real-world graph

datasets demonstrate that PrivGE achieves an optimal balance be-

tween privacy and utility, and significantly outperforms existing

methods in node classification and link prediction tasks.

CCS Concepts
• Security and privacy→ Privacy protections; • Information
systems→ Data mining.

Keywords
Differential Privacy; Graph Embedding; Graph Neural Networks;

Personalized PageRank

ACM Reference Format:
Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang. 2024.

Privacy-Preserving Graph Embedding based on Local Differential Privacy.

In Proceedings of the 33rd ACM International Conference on Information and
KnowledgeManagement (CIKM ’24), October 21–25, 2024, Boise, ID, USA.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3627673.3679759

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0436-9/24/10

https://doi.org/10.1145/3627673.3679759

1 Introduction
Many types of real-world data can be naturally represented as

graphs, such as social networks, financial networks, and trans-

portation networks. Over the past few years, graph embedding

has attracted much attention due to its superior performance in

various machine learning tasks, such as node classification and link

prediction [30, 36, 41, 45]. Graph embedding is a representation

learning problem that uses vectors to capture node features and

structural information in a graph. However, most real-world graphs

involve sensitive information about individuals and their activities,

such as users’ profile information and comments in social networks.

The direct release of embedding vectors of users provides a poten-

tial way for malicious attackers to infer the attributes and social

interactions, which could potentially be private to the users. The

growing awareness of privacy and the establishment of regulations

and laws indicate that it is important to develop privacy-preserving

graph embedding algorithms.

Differential privacy (DP) [9] has recently become the dominant

paradigm for safeguarding individual privacy in data analysis. A

vast majority of differentially private graph learning algorithms

are designed under the centralized model [2, 10, 22, 33, 39, 43],

which assumes that a trusted data curator holds the personal data

of all users and releases sanitized versions of statistics or machine

learning models. However, this assumption is impractical in some

applications due to security or logistical reasons. The centralized

model carries the risk of users’ data being breached by the trusted

data curator through illegal access or internal fraud [13, 14]. In

addition, some social networks are inherently decentralized and

distributed, where no centralized party holds the entire social graph.

As a result, the centralized DP algorithms cannot be applied to these

decentralized social networks.

In contrast to centralized DP, local differential privacy (LDP) [18]

has emerged as a promising approach that ensures stronger pri-

vacy guarantees for users in scenarios involving data aggregation.

LDP operates under a local model, where each user perturbs their

data locally and transmits only the perturbed data to an untrusted

data curator. This means that the original personal data remains

confined to the users’ local devices, effectively eliminating the risk

of data leakage that might occur in the centralized DP settings. As

a result, LDP provides an enhanced level of privacy protection for

individuals. The practicality and effectiveness of LDP have been

recognized by major technology companies, such as Google [11],

1316

https://doi.org/10.1145/3627673.3679759
https://doi.org/10.1145/3627673.3679759
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627673.3679759&domain=pdf&date_stamp=2024-10-21

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang

and Microsoft [5], which have deployed LDP-based solutions to

handle sensitive user data while preserving privacy. Moreover, the

applicability of LDP extends beyond centralized settings, making it

an appealing choice for decentralized applications.

In this paper, our focus is on exploring the design of graph em-

bedding algorithms that satisfy LDP, where the node features are

private and sensitive, and the global graph structure information

is maintained by the data curator. This scenario arises in various

domains, particularly in social network analysis and mobile com-

puting. For instance, consider a social networking platform or a

dating application that utilizes node representations to capture re-

lationships between users. In this context, individuals’ attributes

and preferences are treated as private node features. Integrating

LDP in graph embedding for such applications can safeguard users’

sensitive data while empowering the platform to offer valuable

services.

In the local setting for DP, each user sends only perturbed node

features to the data collector. However, a key challenge arises when

dealing with high-dimensional node features used for graph embed-

ding, as the perturbation in such scenarios can result in significant

information loss. To overcome this challenge, some researchers

have proposed various approaches, including sampling techniques

and tailored perturbation mechanisms, aimed at preserving utility

in the high-dimensional space [8, 15, 24, 32, 37]. Nevertheless, these

mechanisms also introduce excessive noise to the data, potentially

compromising overall performance.

In this paper, we propose PrivGE, a novel privacy-preserving

graph embedding framework based on private node data. Our

framework offers provable privacy guarantees, building on the

principles of local differential privacy. Specifically, to protect the

privacy of node features, we propose the HDS (an acronym for

High-Dimensional Square wave) mechanism, an LDP perturbation

technique tailored for high-dimensional data. Each user can adopt

this perturbationmechanism to obfuscate their features before send-

ing them to the data curator. The server leverages graph structure

information and perturbed node features to learn graph representa-

tions. To avoid neighborhood explosion and over-smoothing issues,

we decouple the feature transformation from the graph propagation.

Furthermore, we adopt personalized PageRank as the proximity

measure to learn node representations. Importantly, we conduct

a comprehensive theoretical analysis of the utility of the PrivGE

framework. Our findings indicate that the proposed approach yields

smaller error bounds than existing mechanisms, specifically, from

O(𝑑 log(𝑑/𝛿)
𝜖
) down to O(log(𝑑/𝛿)), making it a more efficient solu-

tion
1
. Finally, to assess the effectiveness of the PrivGE framework,

we conduct extensive experiments on various real-world datasets.

The results demonstrate that our proposed method establishes state-

of-the-art performance and achieves decent privacy-utility trade-

offs in node classification and link prediction tasks. In summary,

we highlight the main contributions as follows:

• We propose PrivGE, an innovative framework that aims to pre-

serve privacy in graph embedding. Ourmethod provides provable

privacy guarantees and simultaneously ensures effective graph

representation learning.

1
Note that 𝑑 denotes the dimension of the node features, and 𝜖 represents the privacy

budget. Additionally, 𝛿 is a constant between (0, 1].

• To address the challenge dealing with high-dimensional node

features, we propose the HDS mechanism to protect node fea-

ture privacy. This perturbation technique empowers users to

obfuscate their features locally before reporting them to the data

curator, thus enhancing privacy protection.

• We conduct a comprehensive theoretical analysis of the utility

of PrivGE and alternative mechanisms. The results demonstrate

that our mechanism offers smaller error bounds than the others,

reducing them from O(𝑑 log(𝑑/𝛿)
𝜖
) to O(log(𝑑/𝛿)).

• We conduct extensive experiments on various real datasets. The

experimental results show that our proposed method achieves

better privacy-utility trade-offs than existing solutions. For in-

stance, our proposed method achieves about 8% higher accuracy

than the best competitor on the Pubmed dataset in node classifi-

cation.

2 Preliminaries
Problem Statement. We consider an undirected and unweighted

graph 𝐺 = (V, E), where V is the set of nodes (i.e., users) and

E represents the set of edges. Let |V| be the number of nodes.

Each user 𝑣 ∈ V is characterized by a 𝑑-dimensional feature vector

x𝑣 , and we use X ∈ R|V|×𝑑 to denote the feature matrix. Without

loss of generality, we assume the node features are normalized

into [−1, 1]2. Let A and D represent the adjacency matrix and the

diagonal degree matrix, respectively. For each node 𝑣 ∈ V ,N(𝑣) is
the set of neighbors of 𝑣 , and the degree of 𝑣 is |N (𝑣) |.

We assume that the data curator is an untrusted party with access

to the node setV and edge set E. However, the data curator cannot
observe the feature matrix X, which is private to users. Our ultimate

objective is to learn a node embedding matrix and simultaneously

protect the privacy of node data.

Local Differential Privacy. Differential privacy [9] has become

the dominant model for the protection of individual privacy from

powerful and realistic adversaries. DP can be bifurcated into central-

ized DP and local DP. Centralized DP assumes a scenario where a

trusted curator holds all users’ personal data and releases sanitized

versions of the statistics. In contrast to centralized DP, local DP

operates under the assumption of a local model, where the data

curator is considered untrusted. Specifically, each user perturbs

their data via a randomized perturbation mechanism and sends the

obfuscated data to the untrusted data curator.

Definition 2.1 (𝜖-Local Differential Privacy [18]). Given 𝜖 > 0,

a randomized algorithm A satisfies 𝜖-local differential privacy if

and only if for any two users’ private data 𝑥 and 𝑥 ′, and for any

possible output 𝑦 ∈ 𝑅𝑎𝑛𝑔𝑒 (A), we have
Pr[A(𝑥) = 𝑦] ≤ 𝑒𝜖 · Pr[A(𝑥 ′) = 𝑦] . (1)

Here, the parameter 𝜖 is called the privacy budget, which controls

the strength of privacy protection: a lower privacy budget indicates

stronger privacy preservation but leads to lower utility. In addition,

LDP satisfies some important properties that can help us develop

more sophisticated algorithms.

2
Note that it is a common assumption in [32] that the feature fields are known to the

users, so this normalization step does not compromise privacy.

1317

Privacy-Preserving Graph Embedding based on Local Differential Privacy CIKM ’24, October 21–25, 2024, Boise, ID, USA

Proposition 2.2 (Sequential Composition [3]). Given the sequence
of computations A1,A2, . . . ,A𝑘 , if each A𝑖 satisfies 𝜖𝑖 -LDP, then
their sequential execution on the same dataset satisfies

∑
𝑖 𝜖𝑖 -LDP.

Proposition 2.3 (Post-processing [3]). Given A(·) that satisfies
𝜖-LDP, then for any algorithm B, the composed algorithm B(A(·))
also satisfies 𝜖-LDP.

Graph Embedding. The task of graph embedding is to learn

the latent representation of each node. Numerous studies have

shown that the latent representations can capture the structural

and inherent properties of the graph, which can facilitate down-

stream inference tasks, such as node classification and link predic-

tion [30, 41, 45].

As an important class of graph embedding methods, the message

passing framework is of interest due to its flexibility and favorable

performance. This framework comprises two phases: (i) message

propagation among neighbors, and (ii) message aggregation to

update representation. Most GNN models, such as GCN [20] and

GAT [35], employ a message passing process to spread information.

At each layer, feature transformation is coupled with aggregation

and propagation. Increasing the number of layers allows the model

to incorporate information from more distant neighbors, which

promotes a more comprehensive node representation. However,

this approach may lead to over-smoothing and neighborhood ex-

plosion [1].

To address these inadequacies, some studies [1, 21] decouple

the feature transformation from the graph propagation and exploit

node proximity queries to incorporate multi-hop neighborhood

information. Personalized PageRank [1], a widely-used proximity

measure, can characterize node distances and similarities. Conse-

quently, we apply the personalized PageRank matrix to the feature

matrix X to derive the representation matrix Z. The graph propa-

gation equation is defined as follows:

Z = Π · X =

∞∑︁
ℓ=0

𝛼 (1 − 𝛼)ℓ · (D𝑟−1AD−𝑟)ℓ · X, (2)

where Π is the personalized PageRank matrix, 𝑟 ∈ [0, 1] is the
convolution coefficient and 𝛼 ∈ (0, 1) is the decay factor. The

parameter 𝛼 controls the amount of information we capture from

the neighborhood. To be specific, for the values of 𝛼 closer to 1, we

place more emphasis on the immediate neighborhood of the node,

which can avoid over-smoothing. As the value of 𝛼 decreases to 0,

we instead give more attention to the multi-hop neighborhood of

the node.

3 The Proposed Method
In this section, we describe our proposed differentially private

framework for graph embedding. It consists of two components: a

perturbation module and a propagation module. The perturbation

module is utilized to locally obfuscate node features before they

are sent to the data curator. This component helps relieve users’

concerns about sharing their private information. However, the

node features to be collected are likely high-dimensional, whereas

most LDP perturbation functions focus on one-dimensional data,

such as the Laplace mechanism. Since each user is authorized a

limited privacy budget, the allocated privacy budget in each di-

mension is diluted as the number of dimensions increases, which

results in more noise injection. While some LDP mechanisms, such

as One-bit mechanism [5] and Piecewise mechanism [37], have

been extended to handle the high-dimensional data [32, 37], these

mechanisms introduce much noise into the data, which compro-

mises performance. The Square wave mechanism [23] is another

LDP mechanism that aims to reconstruct the distribution of one-

dimensional numerical attributes. This mechanism provides a more

concentrated perturbation than the two mechanisms mentioned

above (i.e., One-bit mechanism and Piecewise mechanism). Thus,

to address this problem, we extend the Square wave mechanism to

handle high-dimensional data, and develop an LDP mechanism to

perturb the node features.

The propagation module is used to spread node features via

information exchange between adjacent nodes, where the represen-

tation of each node is updated based on the aggregation of its neigh-

bors’ features. However, most methods suffer from neighborhood

explosion and over-smoothing issues, as explained in Section 2.

To address these problems, we decouple feature transformation

and propagation, and adopt personalized PageRank as the graph

propagation formula to obtain the representation matrix. More im-

portantly, we provide a comprehensive theoretical analysis of the

utility of our proposed method and alternative mechanisms.

In the rest of this section, we first introduce the technical details

of the perturbation module used for privacy assurances and some

theoretical properties of our proposed mechanism. Next, we present

the propagation process designed for graph embedding. Finally, we

conduct a utility analysis of the proposed framework.

3.1 Perturbation Module
The target of the perturbation module is to gather node features

from individuals under LDP. In specific, each user 𝑣 ∈ V perturbs

his/her private feature vector x𝑣 using the perturbation mechanism

and sends the perturbed data x̃𝑣 to the data curator. The crucial as-

pect is to devise a randomization mechanism that provides plausible

deniability. In this section, we first review three existing perturba-

tion mechanisms and discuss their deficiencies. Then, we propose

our mechanism for feature perturbation.

Existing Solutions. Laplace mechanism [9] is a well-established

approach enforcing differential privacy. It can be applied to the

LDP setting in the following manner. Assuming each user pos-

sesses a one-dimensional value 𝑥 in the range of [−1, 1], we de-

fine a randomized function that generates a perturbed value 𝑥 =

𝑥 + 𝐿𝑎𝑝 (2/𝜖). Here, 𝐿𝑎𝑝 (𝜆) represents a random variable that fol-

lows a Laplace distribution with a scale parameter 𝜆. The Laplace

distribution is characterized by the probability density function

𝑓 (𝑥) = 1

2𝜆
exp(− |𝑥 |

𝜆
).

To extend this mechanism to high-dimensional values, a straight-

forward method is to collect the perturbed value separately using

the Laplace mechanism in each dimension. In this approach, each

dimension is assigned a privacy budget of 𝜖/𝑑 . Applying the com-

position property of LDP as described in Proposition 2.2, we can

conclude that the entire collection of values satisfies 𝜖-LDP. In the

high-dimensional space, since the injected Laplace noise in each

dimension follows 𝐿𝑎𝑝 (2𝑑/𝜖), it is evident that the perturbed value
𝑥 is unbiased, and its variance is

8𝑑2

𝜖2
. Furthermore, the Laplace

mechanism embodies a category of LDP mechanisms known as

1318

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang

1 2 3 4 5
privacy budget ε

0

1

2

3

4

5

6

w
or

st
-c

as
e

no
is

e
va

ri
an

ce
Laplace Mechanism
Multi-Bit Mechanism
Piecewise Mechanism
Square Wave Mechanism

Figure 1: The worst-case noise variance vs. privacy budget
for one-dimensional data.

unbounded mechanisms, where the noise injected into the original

value ranges from negative to positive infinity.

In the one-dimensional Piecewise mechanism [37], the input

domain is [−1, 1], and the range of perturbed data is [−𝑠, 𝑠], where
𝑠 = 𝑒𝜖/2+1

𝑒𝜖/2−1 . Given an original value 𝑥 ∈ [−1, 1], the perturbed value

𝑥 is sampled from the following distribution:

Pr[𝑥 = 𝑐 |𝑥] =
{
𝑝, if 𝑐 ∈ [ℓ (𝑥), 𝑟 (𝑥)],
𝑝

𝑒𝜖 , if 𝑐 ∈ [−𝑠, ℓ (𝑥)) ∪ (𝑟 (𝑥), 𝑠], (3)

where 𝑝 = 𝑒𝜖−𝑒𝜖/2

2𝑒𝜖/2+2 , ℓ (𝑥) =
𝑠+1
2
· 𝑥 − 𝑠−1

2
, and 𝑟 (𝑥) = ℓ (𝑥) + 𝑠 − 1.

Wang et al. [37] also propose an extension of the Piecewise mecha-

nism to process high-dimensional data. The extended mechanism

adopts a sampling technique so that each user reports only 𝑘 out

of 𝑑 dimensions of his/her perturbed data to the data curator. In

that case, each reporting dimension is allocated 𝜖/𝑘 privacy bud-

get, and the reporting data 𝑥 is calibrated to ensure that the final

outcome 𝑥 is unbiased. Formally, 𝑥 is obtained by 𝑥 = 𝑑

𝑘
· 𝑥 . In the

high-dimensional setting, the variance of 𝑥 induced by Piecewise

mechanism is Var[𝑥] = 𝑑 (𝑒𝜖/(2𝑘)+3)
3𝑘 (𝑒𝜖/(2𝑘)−1) 2 + [

𝑑 ·𝑒𝜖/(2𝑘)

𝑘 (𝑒𝜖/(2𝑘)−1) − 1] · 𝑥
2
.

Multi-bit mechanism [32] is another perturbation function used

to handle high-dimensional data under LDP. In its one-dimensional

form, the original data 𝑥 ∈ [−1, 1] is perturbed into −1 or 1, with
the following probabilities:

Pr[𝑥 = 𝑐 |𝑥] =
{

1

𝑒𝜖+1 +
𝑥+1
2
· 𝑒𝜖−1
𝑒𝜖+1 , if 𝑐 = 1,

𝑒𝜖

𝑒𝜖+1 −
𝑥+1
2
· 𝑒𝜖−1
𝑒𝜖+1 , if 𝑐 = −1. (4)

In the high-dimensional space, similar to the Piecewise mech-

anism, the algorithm first uniformly samples 𝑘 out of 𝑑 dimen-

sions without replacement and then performs
𝜖

𝑘
-LDP perturbation

for each sampled dimension. In the end, the data curator trans-

forms the reporting data 𝑥 to its unbiased estimate 𝑥 =
𝑑 (𝑒𝜖/𝑘+1)
𝑘 (𝑒𝜖/𝑘−1) · 𝑥 .

The variance of 𝑥 induced by Multi-bit mechanism is Var[𝑥] =
𝑑

𝑘
(𝑒𝜖/𝑘+1
𝑒𝜖/𝑘−1)

2 − 𝑥2
. In contrast to the Laplace mechanism, the Piece-

wise and Multi-bit mechanisms perturb the original value into a

bounded domain. Consequently, these mechanisms are referred to

as bounded mechanisms.

Deficiencies of Existing Solutions. Even though these mecha-

nisms can handle high-dimensional data, they introduce a signif-

icant amount of noise to the private data, leading to a decline in

performance. To be specific, in the one-dimensional scenario, we

visualize the worst-case noise variance of different mechanisms un-

der varying privacy budgets, as illustrated in Figure 1. Note that in

Algorithm 1: Extended Square Wave Mechanism

Input: single feature 𝑥 ∈ [−1, 1], privacy budget 𝜖 > 0

Output: perturbed feature 𝑥̃ ∈ [−𝑏 − 1, 1 + 𝑏]
1 Let 𝑏 = 𝜖𝑒𝜖 −𝑒𝜖+1

𝑒𝜖 (𝑒𝜖 −𝜖−1) ;

2 Let 𝜂 be sampled uniformly from [0, 1];
3 if 𝜂 < 𝑏𝑒𝜖

𝑏𝑒𝜖+1 then
4 Sample a random value 𝑥̃ uniformly from [𝑥 − 𝑏, 𝑥 + 𝑏];
5 else
6 Sample a random value 𝑥̃ uniformly from

[−𝑏 − 1, 𝑥 − 𝑏) ∪ (𝑥 + 𝑏, 1 + 𝑏];
7 return 𝑥̃

Figure 1, we also add the Square wave mechanism [23] for compar-

ison. The Square wave mechanism was originally proposed in [23],

which can achieve LDP when handling one-dimensional data. We

can observe that the Square wave mechanism [23] provides a con-

siderably smaller noise variance than the Piecewise mechanism

for 𝜖 ≤ 3.5, and only slightly larger than the latter for 𝜖 > 3.5.

Moreover, the worst-case noise variance provided by the Square

wave mechanism is consistently smaller than that of the Laplace

mechanism and the Multi-bit mechanism when 𝜖 ≤ 5.0. In conse-

quence, the Square wave mechanism provides more concentrated

perturbation. In the high-dimensional setting, unbiased calibration

is not conducive to graph embedding and can result in injecting ex-

cessive noise. The Square wave mechanism is designed to estimate

the distribution of one-dimensional numerical data. Inspired by the

ideas of [37] and [32], we generalize the Square wave mechanism

to feature collection in high-dimensional space.

HDS Mechanism. Our HDS mechanism is built upon the Square

wave mechanism [23], which can handle only one-dimensional data.

The Square wave mechanism is based on the following intuition.

Given a single feature 𝑥 , the perturbation module should report a

value close to 𝑥 with a higher probability than a value far away

from 𝑥 . To some extent, the value close to 𝑥 also carries useful in-

formation about the input. The Square wave mechanism is initially

designed for an input domain of [0, 1]. However, in our scenario, the
node features are normalized to the range of [−1, 1]. Consequently,
we extend this mechanism to enhance its capability in handling

a broader range of node features, specifically [−1, 1]. Algorithm 1

outlines the perturbation process for one-dimensional data. The

algorithm takes a single feature 𝑥 ∈ [−1, 1] as input and produces

a perturbed feature 𝑥 ∈ [−𝑏 − 1, 1 + 𝑏], where 𝑏 = 𝜖𝑒𝜖−𝑒𝜖+1
𝑒𝜖 (𝑒𝜖−𝜖−1) . Let

𝑝 = 𝑒𝜖

2𝑏𝑒𝜖+2 and 𝑞 = 1

2𝑏𝑒𝜖+2 . The noisy output 𝑥 follows the distribu-

tion as below:

Pr[𝑥 = 𝑐 |𝑥] =
{
𝑝, if 𝑐 ∈ [𝑥−𝑏, 𝑥+𝑏],
𝑞, if 𝑐 ∈ [−𝑏−1, 𝑥−𝑏)∪(𝑥+𝑏, 1+𝑏] . (5)

Algorithm 2 presents the pseudo-code of our HDS mechanism

for high-dimensional feature collection. The algorithm requires that

each user perturbs only 𝑘 dimensions of their features vector rather

than 𝑑 . This is because, according to the composition property of

LDP described in Proposition 2.2, it increases the privacy budget for

each dimension from 𝜖/𝑑 to 𝜖/𝑘 , reducing the noise variance. Given
a feature vector x, the algorithm first uniformly samples 𝑘 values

from {1, 2, . . . , 𝑑} without replacement, where 𝑘 is a parameter

that controls the number of dimensions to be perturbed. Then

1319

Privacy-Preserving Graph Embedding based on Local Differential Privacy CIKM ’24, October 21–25, 2024, Boise, ID, USA

Algorithm 2: HDS Mechanism

Input: feature vector x ∈ [−1, 1]𝑑 , privacy budget 𝜖 > 0, sampling

parameter 𝑘 ∈ {1, 2, ..., 𝑑 }
Output: perturbed feature vector x̃ ∈ [−𝑏 − 1, 1 + 𝑏]𝑑

1 Let S be a set of 𝑘 values sampled uniformly without replacement

from {1, 2, . . . , 𝑑 };
2 for 𝑗 ∈ {1, 2, . . . , 𝑑 } do
3 if 𝑗 ∈ S then
4 𝑥̃ 𝑗 ← Feed 𝑥 𝑗 and

𝜖
𝑘
as input to Algorithm 1;

5 else
6 𝑥̃ 𝑗 ← 0;

7 return x̃ = [𝑥̃1, 𝑥̃2, . . . , 𝑥̃𝑑]⊤

for each sampled value 𝑗 , the perturbed feature 𝑥 𝑗 is generated

by Algorithm 1, taking 𝑥 𝑗 and
𝜖

𝑘
as input. Correspondingly, the

rest of the 𝑑 − 𝑘 features are encoded into 0 to prevent privacy

leakage. Given that the output domain of the HDS mechanism is

bounded, our proposed mechanism can be categorized as a bounded

mechanism.

Theorem 3.1. The HDS mechanism presented in Algorithm 2 satis-
fies 𝜖-local differential privacy for each node.

Proof. First, we prove that the Algorithm 1 provides 𝜖-LDP.

Let A(𝑥) be the Algorithm 1 that takes the single feature 𝑥 as in-

put, and 𝑥 = A(𝑥) is the obfuscated feature corresponding to 𝑥 .

Suppose 𝑥1 and 𝑥2 are private features of any two users. Accord-

ing to Equation (5), for any output 𝑥 ∈ [−𝑏 − 1, 1 + 𝑏], we have
Pr[A(𝑥1)=𝑥̃]
Pr[A(𝑥2)=𝑥̃] ≤

𝑒𝜖

2𝑏𝑒𝜖+2 · (2𝑏𝑒
𝜖 +2) = 𝑒𝜖 . Thus, the Algorithm 1 satisfies

𝜖-LDP. Since Algorithm 2 executes
𝜖

𝑘
-LDP operations (Algorithm 1)

𝑘 times on the same input data, then according to the composition

property, Algorithm 2 satisfies 𝜖-local differential privacy. □

In the following analysis, we examine the bias and variance of

the HDS mechanism.

Lemma 3.2. Let x̃𝑣 be the output of Algorithm 2 on the input vec-
tor x𝑣 . For any dimension 𝑗 ∈ {1, 2, . . . , 𝑑}, E[𝑥𝑣,𝑗] = 𝐶 · 𝑥𝑣,𝑗 and
Var[𝑥𝑣,𝑗] = 𝑘 (𝑏3𝑒𝜖/𝑘+3𝑏2+3𝑏+1)

3𝑑 (𝑏𝑒𝜖/𝑘+1) + (𝐶 −𝐶2)𝑥2

𝑣,𝑗 , where 𝐶 =
𝑘𝑏 (𝑒𝜖/𝑘−1)
𝑑𝑏𝑒𝜖/𝑘+1 .

Proof. For the expectation, we have

E[𝑥𝑣,𝑗] = E[𝑥𝑣,𝑗 | 𝑗 ∈ S] Pr[𝑗 ∈ S] + E[𝑥𝑣,𝑗 | 𝑗 ∉ S] Pr[𝑗 ∉ S]

=
𝑘

𝑑
· E[𝑥𝑣,𝑗 | 𝑗 ∈ S] . (6)

According to Equation (5), we have

E[𝑥𝑣,𝑗 | 𝑗 ∈ S]=
1

2𝑏𝑒𝜖/𝑘+2

(∫ 𝑥𝑣,𝑗 −𝑏

−1−𝑏
𝑡𝑑𝑡+

∫ 𝑥𝑣,𝑗+𝑏

𝑥𝑣,𝑗 −𝑏
𝑡𝑒𝜖/𝑘𝑑𝑡+

∫
1+𝑏

𝑥𝑣,𝑗+𝑏
𝑡𝑑𝑡

)
=
𝑏 (𝑒𝜖/𝑘 − 1)
𝑏𝑒𝜖/𝑘 + 1 · 𝑥𝑣,𝑗 . (7)

Combining (6) and (7) we conclude

E[𝑥𝑣,𝑗] =
𝑘𝑏 (𝑒𝜖/𝑘 − 1)
𝑑𝑏𝑒𝜖/𝑘 + 1 · 𝑥𝑣,𝑗 = 𝐶 · 𝑥𝑣,𝑗 . (8)

For the variance, we have

Var[𝑥𝑣,𝑗] = E[𝑥2

𝑣,𝑗] − (E[𝑥𝑣,𝑗])2

= E[𝑥2

𝑣,𝑗 | 𝑗 ∈ S] Pr[𝑗 ∈ S]+E[𝑥2

𝑣,𝑗 | 𝑗 ∉ S] Pr[𝑗 ∉ S]−E2 [𝑥𝑣,𝑗]

=
𝑘

𝑑
· E[𝑥2

𝑣,𝑗 | 𝑗 ∈ S] − (E[𝑥𝑣,𝑗])2 . (9)

Algorithm 3: Backward Push Propagation

Input: graph𝐺 = (V, E) , perturbed feature matrix X̃, decay factor

𝛼 , convolutional coefficient 𝑟 , threshold 𝑟𝑚𝑎𝑥

Output: embedding matrix Z̃
1 Initialize reserve matrix Q← 0 and residue matrix R← D−𝑟 X̃;

2 while ∃𝑣 and ∃ 𝑗 ∈ {0, . . . , 𝑑 − 1} s.t. |R(𝑣, 𝑗) | > 𝑟𝑚𝑎𝑥 do
3 for 𝑢 ∈ N(𝑣) do
4 R(𝑢, 𝑗) ← R(𝑢, 𝑗) + (1 − 𝛼) · R(𝑣,𝑗)

|N (𝑢) | ;

5 Q(𝑣, 𝑗) ← Q(𝑣, 𝑗) + 𝛼 · R(𝑣, 𝑗) ;
6 R(𝑣, 𝑗) ← 0;

7 Z̃← D𝑟 · Q;

8 return Z̃

According to Equation (5), we have

E[𝑥2

𝑣,𝑗 | 𝑗 ∈ S]=

∫ 𝑥𝑣,𝑗 −𝑏
−1−𝑏 𝑡 2 𝑑𝑡+

∫ 𝑥𝑣,𝑗+𝑏
𝑥𝑣,𝑗 −𝑏

𝑡 2𝑒𝜖/𝑘 𝑑𝑡+
∫

1+𝑏
𝑥𝑣,𝑗+𝑏

𝑡 2 𝑑𝑡

2𝑏𝑒𝜖/𝑘 + 2
=
𝑏3𝑒𝜖/𝑘 + 3𝑏2 + 3𝑏 + 1

3(𝑏𝑒𝜖/𝑘 + 1) + 𝑏 (𝑒
𝜖/𝑘 − 1)

𝑏𝑒𝜖/𝑘 + 1 · 𝑥
2

𝑣,𝑗 . (10)

Combining (8), (9) and (10) yields

Var[𝑥𝑣,𝑗] =
𝑘 (𝑏3𝑒𝜖/𝑘 + 3𝑏2 + 3𝑏 + 1)

3𝑑 (𝑏𝑒𝜖/𝑘 + 1) +(𝐶 −𝐶2)𝑥2

𝑣,𝑗 . (11)

□

3.2 Propagation Module
The propagation module takes the perturbed feature matrix X̃ as

input, which comprises obfuscated feature vectors x̃𝑣 for each user

𝑣 ∈ V , and outputs the embedding matrix Z̃. To incorporate neigh-

borhood information, we exploit personalized PageRank as the

proximity measure for graph propagation. Formally, the process of

graph propagation can be formulated as follows:

Z̃ = Π · X̃ =

∞∑︁
ℓ=0

𝛼 (1 − 𝛼)ℓ · (D𝑟−1AD−𝑟)ℓ · X̃. (12)

We utilize the well-established backward push algorithm [41] as a

standard technique to calculate personalized PageRank. In our work,

we extend this algorithm to enable efficient graph propagation.

Algorithm 3 illustrates the pseudo-code of the backward push

propagation algorithm. Intuitively, the algorithm starts by setting

the residue matrix R = D−𝑟A and the reserve matrix Q = 0 (Line

1). Subsequently, a push procedure (Line 2-6) is executed for each

node 𝑣 if the absolute value of the residue entry R(𝑣, 𝑗) exceeds a
threshold 𝑟𝑚𝑎𝑥 until no such 𝑣 exists. Specifically, if there is a node

𝑣 meeting |R(𝑣, 𝑗) | > 𝑟𝑚𝑎𝑥 , the algorithm increases the residue of

each neighbor 𝑢 by (1−𝛼) · R(𝑣,𝑗)
|N (𝑢) | and increases the reserve of node

𝑣 by 𝛼 × R(𝑣, 𝑗). After that, it reset the residue R(𝑣, 𝑗) to 0. Finally,

the embedding matrix is Z̃ = D𝑟 · Q. The propagation process can

be seen as post-processing and thus does not consume additional

privacy budget.

3.3 Utility Analysis
In this section, we conduct an in-depth theoretical analysis regard-

ing the utility of the PrivGE framework. Additionally, for compari-

son, we also present a set of theorems that characterize the utility

of alternative mechanisms, including the Laplace, Piecewise and

Multi-bit mechanisms.

1320

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang

For each node 𝑣 ∈ V , we use z𝑣 and z̃𝑣 to represent the true

node embedding vector and the perturbed node embedding vec-

tor, respectively. In addition, we define the ℓ2 norm of Π𝑣 as ∥Π𝑣 ∥2 =
(∑𝑢∈V (Π(𝑣,𝑢))2)1/2 and the ℓ∞ norm as ∥Π𝑣 ∥∞ = max𝑢∈V |Π(𝑣,𝑢) |.
For any dimension 𝑗 ∈ {1, . . . , 𝑑}, according to Equations (2) and

(12), we have 𝑧𝑣,𝑗 =
∑

𝑢∈V Π(𝑣,𝑢) · 𝑥𝑢,𝑗 and 𝑧𝑣,𝑗 =
∑

𝑢∈V Π(𝑣,𝑢) ·
𝑥𝑢,𝑗 . The following theorem establishes the estimation error of the

PrivGE framework.

Theorem 3.3. Given 𝛿 > 0, for any node 𝑣 , with probability at least
1 − 𝛿 , we have max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | = O(log(𝑑/𝛿)).

Proof. The variable 𝑧𝑣,𝑗 =
∑

𝑢∈V 𝑡𝑢 is the sum of |V| indepen-
dent random variables, where 𝑡𝑢 = Π(𝑣,𝑢) · 𝑥𝑢,𝑗 . According to the

Algorithm 2, we have 𝑡𝑢 ∈ [𝑎𝑢 , 𝑏𝑢], where 𝑎𝑢 = Π(𝑣,𝑢) · (−𝑏 − 1)
and 𝑏𝑢 = Π(𝑣,𝑢) · (𝑏 + 1). Observe that 𝑏𝑢 − 𝑎𝑢 ≤ 2(𝑏 + 1) for any
node 𝑢. Then by Bernstein’s inequality, we have

Pr[|𝑧𝑣,𝑗 −
∑︁

𝑢∈V
E[𝑡𝑢] | > 𝜏]

< 2 · exp(− 𝜏2

2

∑
𝑢∈V Var[𝑡𝑢] + 4

3
𝜏 (𝑏 + 1)

), (13)

where E[𝑡𝑢] = Π(𝑣,𝑢) ·E[𝑥𝑢,𝑗] and Var[𝑡𝑢] = (Π(𝑣,𝑢))2 ·Var[𝑥𝑢,𝑗].
The asymptotic expressions involving 𝜖 are evaluated in 𝜖 → 0,

which yields 𝑏 =
𝜖/𝑘 ·𝑒𝜖/𝑘−𝑒𝜖/𝑘+1
𝑒𝜖/𝑘 (𝑒𝜖/𝑘−𝜖/𝑘−1) = O(1) and Var[𝑥𝑢,𝑗] = O(𝑘/𝑑).

Therefore, we have

Pr[|𝑧𝑣,𝑗 −
∑︁

𝑢∈V
E[𝑡𝑢] | > 𝜏]

< 2 · exp(− 𝜏2

O(𝑘/𝑑) ·∑𝑢∈V (Π(𝑣,𝑢))2 + 𝜏 · O(1)
) . (14)

There exists 𝜏 = O(log(𝑑/𝛿)) such that the following inequality

holds with at least 1 − 𝛿/𝑑 probability

|𝑧𝑣,𝑗 −
∑︁

𝑢∈V
E[𝑡𝑢] | ≤ 𝜏 . (15)

Observe that

|𝑧𝑣,𝑗 −
∑︁

𝑢∈V
E[𝑡𝑢] |

= |𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 + 𝑧𝑣,𝑗 −
𝑘

𝑑
· 𝑏 (𝑒

𝜖/𝑘 − 1)
𝑏𝑒𝜖/𝑘 + 1 · 𝑧𝑣,𝑗 |

≥ |𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | − |𝑧𝑣,𝑗 −
𝑘

𝑑
· 𝑏 (𝑒

𝜖/𝑘 − 1)
𝑏𝑒𝜖/𝑘 + 1 · 𝑧𝑣,𝑗 |. (16)

Since 𝑥𝑢,𝑗 ∈ [−1, 1] and
∑

𝑢∈V Π(𝑣,𝑢) = 1, combining (16) in (15),

we have

|𝑧𝑣,𝑗−𝑧𝑣,𝑗 | ≤ 𝜏+|𝑧𝑣,𝑗−
𝑘

𝑑
· 𝑏 (𝑒

𝜖/𝑘 − 1)
𝑏𝑒𝜖/𝑘 + 1 ·𝑧𝑣,𝑗 | = O(log(𝑑/𝛿)).

By the union bound, max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | ≤ O(log(𝑑/𝛿)) holds
with at least 1 − 𝛿 probability. □

Next, we present a series of theorems that delineate the utility

of alternative mechanisms.

Theorem 3.4. Assume that the perturbation function is the Laplace
mechanism. Given 𝛿 > 0, for any node 𝑣 ∈ V with probability as
least 1 − 𝛿 , we have

max

𝑗 ∈{1,...,𝑑}
|𝑧𝑣,𝑗−𝑧𝑣,𝑗 |=


O(𝑑𝑙𝑜𝑔 (𝑑/𝛿)

𝜖
), 𝛿 < 2𝑑𝑒

− ∥Π𝑣 ∥2
2

2∥Π𝑣 ∥2∞ ,

O(𝑑
√

𝑙𝑜𝑔 (𝑑/𝛿)
𝜖

), 𝛿 ≥ 2𝑑𝑒
− ∥Π𝑣 ∥2

2

2∥Π𝑣 ∥2∞ .

To prove Theorem 3.4, our initial step entails demonstrating the

sub-exponential nature of the Laplace random variable. Thus, we

present the definition of sub-exponential random variables.

Definition 3.5 (Sub-exponential distirbutions). A random variable

𝜂 is said to be sub-exponential with parameter 𝜈 (denoted 𝜂 ∼
𝑠𝑢𝑏𝐸 (𝜈)) if E[𝜂] = 0, and its moment generating function (MGF)

satisfies

E[𝑒𝑠𝜂] ≤ 𝑒𝑠
2𝜈2/2,∀|𝑠 | ≤ 1/𝜈. (17)

Then, the following lemma confirms that the Laplace distribution

is sub-exponential.

Lemma 3.6. If a random variable 𝜂 obeys the Laplace distribution
with parameter 𝜆, then 𝜂 is sub-exponential: 𝜂 ∼ 𝑠𝑢𝑏𝐸 (2𝜆).

Proof. Without loss of generality, we consider a centered ran-

dom variable 𝜂 ∼ 𝐿𝑎𝑝 (1). Its moment generating function (MGF)

is given by E[𝑒𝑠𝜂] = 1

1−𝑠2 for |𝑠 | < 1. Notably, one of the upper

bounds on the MGF is E[𝑒𝑠𝜂] ≤ 𝑒2𝑠
2

for |𝑠 | < 1

2
. This indicates that

𝜂 ∼ 𝑠𝑢𝑏𝐸 (2).
Next, we extend the result to the Laplace distribution with pa-

rameter 𝜆. Note that if 𝜂 ∼ 𝐿𝑎𝑝 (1), then 𝜆𝜂 ∼ 𝐿𝑎𝑝 (𝜆). As a re-

sult, the upper bound on the MGF becomes E[𝑒𝑠𝜆𝜂] ≤ 𝑒2𝜆
2𝑠2

for

|𝑠 | < 1

2𝜆
, from which we conclude that the distribution 𝐿𝑎𝑝 (𝜆) is

sub-exponential with parameter 𝜈 = 2𝜆. □

Now, we prove Theorem 3.4.

Proof. If the perturbation function is the Laplace mechanism,

we have 𝑧𝑣,𝑗−𝑧𝑣,𝑗 =
∑

𝑢∈V Π(𝑣,𝑢) ·𝜂𝑢 , where𝜂𝑢 ∼ 𝐿𝑎𝑝 (2𝑑/𝜖). Since
the random variable 𝜂𝑢 ∼ 𝑠𝑢𝑏𝐸 (4𝑑/𝜖), according to the Bernstein’s

inequality we have

Pr[|𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | > 𝜏] = Pr[|
∑︁

𝑢∈V
Π(𝑣,𝑢) · 𝜂𝑢 | > 𝜏]

<

{
2𝑒−𝜏

2𝜖2/32𝑑2 ∥Π𝑣 ∥22 , if 0 ≤ 𝜏 ≤ 4𝑑 ∥Π𝑣 ∥22
𝜖 ∥Π𝑣 ∥∞ ,

2𝑒−𝜏𝜖/8𝑑 ∥Π𝑣 ∥∞ , if 𝜏 >
4𝑑 ∥Π𝑣 ∥22
𝜖 ∥Π𝑣 ∥∞ .

(18)

First, consider the case where 0 ≤ 𝜏 ≤ 4𝑑 ∥Π𝑣 ∥22
𝜖 ∥Π𝑣 ∥∞ . Let 𝛿/𝑑 =

2𝑒−𝜏
2𝜖2/32𝑑2 ∥Π𝑣 ∥22 . Solving for 𝜏 , we obtain 𝜏 = 4𝑑

𝜖
·
√︁
2𝑙𝑜𝑔(2𝑑/𝛿)·∥Π𝑣 ∥2.

In this case, 𝛿 must satisfy the condition 𝛿 ≥ 2𝑑𝑒
− ∥Π𝑣 ∥2

2

2∥Π𝑣 ∥2∞ . Utilizing the

union bound and evaluating the asymptotic expressions for small 𝜖

(i.e., 𝜖 → 0), we can deduce that when 𝛿 ≥ 2𝑑𝑒
− ∥Π𝑣 ∥2

2

2∥Π𝑣 ∥2∞ , there exists

𝜏 = O(𝑑
√︁
𝑙𝑜𝑔(𝑑/𝛿)/𝜖) such that the inequality max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 −

𝑧𝑣,𝑗 | ≤ 𝜏 holds with at least 1 − 𝛿 probability.

Second, suppose 𝜏 ≥ 4𝑑 ∥Π𝑣 ∥22
𝜖 ∥Π𝑣 ∥∞ . Similar to the first case, let 𝛿/𝑑 =

2𝑒−𝜏𝜖/8𝑑 ∥Π𝑣 ∥∞
. Solving the above for 𝜏 , we have 𝜏 = 8𝑑

𝜖
· 𝑙𝑜𝑔(2𝑑/𝛿) ·

∥Π𝑣 ∥∞. For this case to be valid, 𝛿 must satisfy 𝛿 < 2𝑑𝑒
− ∥Π𝑣 ∥2

2

2∥Π𝑣 ∥2∞ . Sim-

ilarly, according to union bound, when 𝛿 < 2𝑑𝑒
− ∥Π𝑣 ∥2

2

2∥Π𝑣 ∥2∞ , there exists

𝜏 = O(𝑑𝑙𝑜𝑔(𝑑/𝛿)/𝜖) such that the inequality max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 −
𝑧𝑣,𝑗 | ≤ 𝜏 holds with at least 1 − 𝛿 probability. □

Theorem 3.7. Assume that the perturbation function is the Piecewise
mechanism or the Multi-bit mechanism. Given 𝛿 > 0, for any node
𝑣 , with probability at least 1 − 𝛿 , we have max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | =
O(𝑑 log(𝑑/𝛿)

𝜖
).

Proof. If the perturbation function is Piecewise mechanism,

for any node 𝑢, Π(𝑣,𝑢) · (𝑥𝑢,𝑗 − 𝑥𝑢,𝑗) is a zero-mean random vari-

able and its variance is (Π(𝑣,𝑢))2 Var[𝑥𝑢,𝑗]. Besides, the inequality

1321

Privacy-Preserving Graph Embedding based on Local Differential Privacy CIKM ’24, October 21–25, 2024, Boise, ID, USA

|Π(𝑣,𝑢) · (𝑥𝑢,𝑗 −𝑥𝑢,𝑗) | ≤ 2𝑑𝑒𝜖/2𝑘

𝑘 (𝑒𝜖/2𝑘−1) always holds. Then by Bernstein’s

inequality, we find that

Pr[|𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | > 𝜏] = Pr[|
∑︁

𝑢∈V
Π(𝑣,𝑢) · (𝑥𝑢,𝑗 − 𝑥𝑢,𝑗) | > 𝜏]

< 2 exp(−𝜏2

2

∑
𝑢∈V (Π(𝑣,𝑢))2 Var[𝑥𝑢,𝑗] + 𝜏 ·4𝑑𝑒𝜖/2𝑘

3𝑘 (𝑒𝜖/2𝑘−1)

) . (19)

Note that asymptotic expressions involving 𝜖 are in the sense of

𝜖 ← 0. Thus, we can deduce that Var[𝑥𝑢,𝑗] = O(𝑘𝑑𝜖2
) and 𝑑𝑒𝜖/2𝑘

𝑘 (𝑒𝜖/2𝑘−1) =

O(𝑑
𝜖
). Since Π(𝑣,𝑢) ∈ [0, 1] and ∑

𝑢∈V Π(𝑣,𝑢) = 1, we can obtain

that

Pr[|𝑧𝑣,𝑗 − 𝑧𝑣,𝑗 | > 𝜏] < 2 · exp(−𝜏2

O(𝑘𝑑
𝜖2
) + 𝜏 · O(𝑑

𝜖
)
). (20)

By applying the union bound, we can ensure that max𝑗 ∈{1,...,𝑑} |𝑧𝑣,𝑗 −
𝑧𝑣,𝑗 | ≤ 𝜏 holds with at least 1 − 𝛿 probability by setting 𝛿/𝑑 = 2 ·
exp(−𝜏 2

O(𝑘𝑑
𝜖2
)+𝜏 ·O (𝑑

𝜖
)). Solving the above for𝜏 , we have𝜏 = O(𝑑 log(𝑑/𝛿)

𝜖
).

Given that theMulti-bit mechanism belongs to the same category

as the Piecewise mechanism (both being bounded mechanisms)

and the perturbed value is also unbiased, the analysis process of

the Multi-bit mechanism closely resembles that of the Piecewise

mechanism. Due to space constraints, we omit the proof of the

Multi-bit mechanism. □

According to the utility analysis presented in Theorem 3.3 and

Theorem 3.4, we observe that theHDSmechanism can yield a higher

utility than the Laplace mechanism. Furthermore, as indicated by

Theorem 3.3 and Theorem 3.7, the proposed HDS mechanism offers

superior error bounds compared to the Piecewise and Multi-bit

mechanisms, reducing them from O(𝑑 log(𝑑/𝛿)
𝜖
) to O(log(𝑑/𝛿)).

4 Experiments
4.1 Experimental Setup
Dataset. Our experiments use five real-world datasets: two cita-

tion networks (i.e., Cora and Pubmed [20]), one social networks (i.e.,

LastFM [32]) and twoweb graphs (i.e., Facebook andWikipedia [31]).

Table 1 summarizes the statistics of the datasets used for evaluation.

Following previous works [24, 32], we randomly split each dataset

into three portions for node classification: 50% for training, 25%

for validation, and 25% for testing. Since the labels of nodes in the

LastFM dataset are highly imbalanced, we restrict the classes to the

top 10 with the most samples. For link prediction, the edges are

divided into 85% for training, 10% for testing, and 5% for validation.

And we sample the same number of non-existing links in each

group as negative links. Note that the LDP mechanisms perturb the

node features of all training, validation, and test sets.

Model Implementation Details. For node classification, we first
obtain the node embedding matrix Z̃ via the PrivGE framework.

Then the matrix Z̃ is fed into a model composed of a multi-layer

perceptron (MLP) followed by a softmax function for prediction:

Ŷ = softmax(MLP(Z̃;Θ)), (21)

where Ŷ represents the posterior class probabilities and Θ is the

learnable model parameters. Moreover, we adopt the cross-entropy

loss as the optimization function to train the classification module.

To perform link prediction, we first extract edge features based

on node representations. Specifically, for each node pair (𝑢, 𝑣) ∈ E,

Table 1: Dataset Statistics

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,278 1,433 7

Pubmed 19,717 44,324 500 3

Lastfm 7,083 25,814 7,842 10

Facebook 22,470 170,912 4,714 4

Wikipedia 11,631 170,845 13,183 2

we combine the node vectors z̃𝑢 and z̃𝑣 via the Hadamard product

to compose the edge vector. Then, we take the constructed edge

feature vectors as input and train a logistic regression classifier

to predict the presence or absence of edges. Following existing

works [25, 38], we use the pairwise objective loss function to opti-

mize the model.

For each task, we train the model on the training set and tune

the hyperparameters based on the model’s performance in the val-

idation set. First, we define the search space of hyperparameters.

Then we fix the privacy budget 𝜖 = 1.0 and utilize NNI [26], an

automatic hyperparameter optimization tool, to determine the op-

timal choices. We use the Adam optimizer to train the models and

select the best model to evaluate the testing set.

Competitors and Evaluation Metric. In our experiments, we

compare the performance of the HDS mechanism with the Laplace

mechanism (LP) [9], the Piecewise mechanism (PM) [37] and the

Multi-bit mechanism (MB) [32]. Following existing works [20, 32],

we use accuracy to evaluate the node classification performance and

AUC to evaluate the link prediction performance. Unless otherwise

stated, we run each algorithm ten times for both tasks and report

the mean and standard deviation values.

Software andHardware.We implement our algorithm in PyTorch

and C++. All the experiments are conducted on a machine with an

NVIDIA GeForce RTX 3080Ti, an AMD Ryzen Threadripper PRO

3995WX CPU, and 256GB RAM. Our code is available online
3
.

4.2 Experimental Results
Node Classification. In the first set of experiments, we evaluate

the performance of different mechanisms under different privacy

budgets for node classification. The privacy budget varies over the

range {0.01, 0.1, 1.0, 2.0, 3.0, 5.0,∞}, and we report the accuracy of

each method under each privacy budget, as shown in Figure 2. Note

that the error bars in the Figure 2 represent the standard deviation.

In addition, the case where 𝜖 = ∞ is provided for comparison with

non-private baselines, where node features are directly employed

without any perturbation.

The experimental results lead us to conclude that our proposed

method demonstrates robustness to the perturbations and achieves

comparable performance to the non-private baseline across all

datasets. For instance, on the LastFM dataset, the HDS mecha-

nism achieves an accuracy of about 89.0% at 𝜖 = 0.01, with only

a 1.6% decrease compared to the non-private method (𝜖 = ∞). On
the Cora dataset, the accuracy of HDS mechanism at 𝜖 = 0.01 is

approximately 84.2%, just 4.3% lower than the non-private method.

Similarly, on the Pubmed dataset, when 𝜖 = 0.01, our method loses

less than 6.0% in accuracy over the non-private baseline. Inter-

estingly, on the Facebook and Wikipedia datasets, our framework

3
https://github.com/Zening-Li/PrivGE

1322

https://github.com/Zening-Li/PrivGE

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang

75

80

85

90

0.01 0.1 1.0 2.0 3.0 5.0 ∞

LP PM MB HDS

A
cc

u
ra

cy
 (

%
)

Privacy Cost ε

(a) Cora

60

65

70

75

80

85

90

0.01 0.1 1.0 2.0 3.0 5.0 ∞

LP PM MB HDS

A
cc

u
ra

cy
 (

%
)

Privacy Cost ε

(b) Pubmed

84

86

88

90

92

0.01 0.1 1.0 2.0 3.0 5.0 ∞

LP PM MB HDS

A
cc

u
ra

cy
 (

%
)

Privacy Cost ε

(c) LastFM

84

86

88

90

92

94

0.01 0.1 1.0 2.0 3.0 5.0 ∞

LP PM MB HDS

A
cc

u
ra

cy
 (

%
)

Privacy Cost ε

(d) Facebook

72

74

76

78

80

82

0.01 0.1 1.0 2.0 3.0 5.0 ∞

LP PM MB HDS

A
cc

u
ra

cy
 (

%
)

Privacy Cost ε

(e) Wikipedia

Figure 2: Trade-offs between privacy and accuracy under different LDP mechanisms in node classification. Note that the error
bars represent the standard deviation and the results for∞ denote the accuracy of the non-private baselines.
Table 2: Trade-offs between privacy and AUC under different
LDP mechanisms in link prediction. Note that the results for
∞ denote the AUC of the non-private baselines.

Dataset Mech. 𝜖 = 1.0 𝜖 = 2.0 𝜖 = 3.0 𝜖 = 5.0

Cora

LP 75.2 ± 3.1 76.0 ± 3.5 75.0 ± 3.7 75.2 ± 3.6
PM 73.2 ± 3.2 78.2 ± 1.1 77.8 ± 1.7 75.2 ± 2.1

𝜖 = ∞ MB 76.0 ± 1.8 78.5 ± 1.4 78.5 ± 1.1 76.6 ± 0.9
93.1 ± 0.3 HDS 82.4 ± 1.5 82.7 ± 0.8 82.5 ± 0.9 82.3 ± 0.8

Pubmed

LP 62.8 ± 0.6 63.2 ± 1.2 64.3 ± 0.8 64.4 ± 0.5
PM 79.0 ± 1.0 77.0 ± 1.2 76.7 ± 1.5 74.9 ± 0.5

𝜖 = ∞ MB 79.4 ± 0.8 77.9 ± 1.0 78.4 ± 0.7 77.2 ± 0.7
97.5 ± 0.1 HDS 79.5 ± 1.5 79.6 ± 1.6 80.1 ± 0.2 79.6 ± 1.5

Lastfm

LP 74.4 ± 6.3 75.4 ± 6.0 77.0 ± 4.8 73.8 ± 3.5
PM 67.9 ± 0.9 71.7 ± 6.2 72.0 ± 3.9 80.1 ± 1.4

𝜖 = ∞ MB 75.7 ± 3.1 78.2 ± 3.3 78.9 ± 4.6 78.0 ± 3.3
95.9 ± 0.1 HDS 91.7 ± 1.3 92.0 ± 0.1 92.0 ± 0.1 92.0 ± 0.1

Facebook

LP 81.92 ± 3.2 84.7 ± 2.7 85.6 ± 1.1 86.0 ± 1.2
PM 92.1 ± 0.5 93.2 ± 0.5 93.3 ± 0.3 89.9 ± 0.3

𝜖 = ∞ MB 92.6 ± 3.8 92.8 ± 2.3 93.1 ± 2.2 87.7 ± 0.9
95.6 ± 0.1 HDS 96.7 ± 0.1 96.7 ± 0.1 96.6 ± 0.1 96.6 ± 0.1

Wikipedia

LP 72.2 ± 2.8 74.9 ± 4.7 76.1 ± 2.5 75.7 ± 3.5
PM 76.9 ± 5.3 76.6 ± 4.6 76.8 ± 3.5 77.9 ± 1.7

𝜖 = ∞ MB 76.6 ± 3.6 77.2 ± 1.4 78.2 ± 1.3 78.4 ± 1.1
98.5 ± 0.1 HDS 99.1 ± 0.1 99.1 ± 0.1 99.1 ± 0.1 99.1 ± 0.1

outperforms the non-private setting by about 1.2 and 0.4 percentage

points, respectively. We conjecture that the observed experimental

results are mainly due to the fact that the injected noise provides

the model with strong generalization capabilities. Additionally, the

small standard deviation in our experimental results indicates that

our method maintains stable performance under various privacy

budgets. It consistently exhibits similar accuracy across distinct

privacy budget values from 0.01 to 1.0, which serves as a powerful

demonstration of its robustness to perturbations.

Second, our HDS mechanism consistently outperforms the other

mechanisms in almost all cases, particularly under smaller privacy

budgets, which is consistent with the theoretical analysis in The-

orem 3.3. For instance, at 𝜖 = 0.01, HDS achieves approximately

8.2% higher accuracy than the best competitor, the Laplace mecha-

nism, on the Pubmed dataset. Similarly, at 𝜖 = 0.01, our approach

outperforms LP, PM, and MB by 1.7%, 4.4% and 6.4%, respectively,

on the Wikipedia dataset. This remarkable performance advantage

can be attributed to the fact that our proposed perturbation mech-

anism can provide more concentrated perturbations compared to

the Laplace, Piecewise, and Multi-bit mechanisms. Additionally, we

can observe that even the simplest method, the Laplace mechanism,

sometimes outperforms the Piecewise and Multi-bit mechanisms,

especially when a smaller privacy budget is allocated.

Link Prediction. In the second set of experiments, we shift our

focus to another important task: link prediction. To examine the

performance of PrivGE under different privacy budgets, we vary 𝜖

from 1.0 to 5.0. The experimental results are summarized in Table 2.

Similar to the node classification task, the HDS mechanism out-

performs the other three methods in terms of the AUC score. At

𝜖 = 1.0, the AUC scores of our proposed mechanism outperform

the best competitors by about 6.5, 16.0, and 4.0 on the datasets

Cora, LastFM, and Facebook, respectively. In addition, even con-

sidering strong privacy guarantees, such as 𝜖 = 1.0, the technique

still achieves acceptable AUC scores on all five datasets, especially

on the LastFM, Facebook and Wikipedia datasets, where the AUC

scores are above 90%. These outcomes underline the effectiveness

of the proposed method for the link prediction task. Similar to the

node classification task, our perturbation mechanism yields higher

AUC scores than the non-private baseline on both Facebook and

Wikipedia datasets, which further confirms the efficiency of the

proposed solution. Unlike the observations obtained from the node

classification, in the link prediction task, we notice that the Laplace

mechanism is inferior to the Piecewise and Multi-bit mechanisms

in most cases. In addition, the performance of the three competitors

becomes very unstable since a lot of noise is injected. As a result,

in some cases, the performance with a small privacy budget yet

outperforms when the privacy budget is large. In summary, the

experimental results emphasize that our approach can achieve a

better trade-off between privacy and utility.

Parameter Analysis. In this experiment, we investigate the impact

of the parameter𝑘 on the performance of our proposedmethod. The

parameter 𝑘 is a hyperparameter that controls the size of the subset

of dimensions that are randomly perturbed in the HDS mechanism.

We vary 𝑘 within {1, 3, 5, 10, 20, 30, 50}, and evaluate the results

under different privacy budgets 𝜖 ∈ {1.0, 2.0, 3.0} for both node

classification and link prediction tasks.

As for node classification, the experimental results are illustrated

in Figure 3. We observe that the performance of our mechanism re-

mains relatively stable for all values of 𝑘 on Cora, LastFM, and Face-

book datasets, varying up and down by no more than 2.0%. How-

ever, on the Pubmed dataset, the approach performs better when

𝑘 is smaller, especially when 𝑘 ≤ 5. In contrast, on the Wikipedia

dataset, the performance of HDS improves as the number of sam-

ples increases, particularly when 𝑘 ≥ 10. This indicates that the

performance of HDS is sensitive to the value of 𝑘 on the Pubmed

and Wikipedia datasets, whereas it is relatively insensitive to 𝑘 on

the other three datasets.

As for link prediction, the experimental results are illustrated

in Figure 4. Our framework performs better for small values of 𝑘

1323

Privacy-Preserving Graph Embedding based on Local Differential Privacy CIKM ’24, October 21–25, 2024, Boise, ID, USA

 83

 84

 85

 86

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
cc

u
ra

cy
 (

%
)

k

(a) Cora

 70

 75

 80

 85

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
cc

u
ra

cy
 (

%
)

k

(b) Pubmed

 87

 88

 89

 90

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
cc

u
ra

cy
 (

%
)

k

(c) LastFM

 90

 91

 92

 93

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
cc

u
ra

cy
 (

%
)

k

(d) Facebook

 74

 76

 78

 80

 82

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
cc

u
ra

cy
 (

%
)

k

(e) Wikipedia

Figure 3: Effect of the sampling parameter 𝑘 on the performance of PrivGE for node classification.

 70

 75

 80

 85

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
U

C
 (

%
)

k

(a) Cora

 70

 75

 80

 85

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
U

C
 (

%
)

k

(b) Pubmed

 88

 90

 92

 94

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
U

C
 (

%
)

k

(c) LastFM

 92

 94

 96

 98

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
U

C
 (

%
)

k

(d) Facebook

 97

 98

 99

 100

1 3 5 10 20 30 50

ε=1.0 ε=2.0 ε=3.0

A
U

C
 (

%
)

k

(e) Wikipedia

Figure 4: Effect of the sampling parameter 𝑘 on the performance of PrivGE for link prediction.
on Cora, LastFM, and Facebook datasets, while it achieves better

results for large 𝑘 values on the Pubmed dataset. On the Wikipedia

dataset, our method is stable across all values of 𝑘 . Generally, the

optimal value of 𝑘 depends on the specific dataset and task.

5 Related work
DP on Graph Analysis. DP has become the standard for pri-

vacy protection in various data analysis tasks [7, 18]. In central-

ized DP, most graph analysis tasks revolve around the computa-

tion of diverse statistics such as degree distributions and subgraph

counts [3, 6, 17, 19, 28, 42]. In addition, research extends to other

graph problems under DP, such as node subset release for vertex

cover [12] and densest subgraph [4, 27], and synthetic graph gen-

eration [16]. However, all these centralized DP methods require

possession of all user data, which suffers from the data breach.

Local DP assumes an untrusted data collector and recently has

attracted much attention in graph analysis. Ye et al. [40] propose a

method to estimate graph metrics. Qin et al. [29] develop a multi-

phase approach to generate synthetic decentralized social networks

under the notion of LDP. In addition, a series of studies have focused

on subgraph counting [13, 14, 34]. Sun et al. [34] develop a multi-

phase framework under decentralized DP, which assumes that each

user allows her friends to see all her connections. Imola et al. [13]

introduce an additional round of interaction between users and the

data collector to reduce the estimation error, and [14] employs edge

sampling to improve the communication efficiency.

DP on Graph Learning. To address the privacy concerns in graph

learning, DP has been widely used to protect sensitive data. For

instance, Xu et al. [39] propose a DP algorithm for graph embedding

that uses the objective perturbation mechanism on the loss function

of the matrix factorization. Zhang et al. [43] devise a perturbed

gradient descent method based on the Lipschitz condition. Epasto

et al. [10] develop an approximate method for computing person-

alized PageRank vectors with differential privacy and extend this

algorithm to graph embedding. In recent years, DP has also been

used to provide formal privacy assurances for Graph Neural Net-

works [2, 22, 33]. All these methods assume that there is a trusted

data curator, making them susceptible to data leakage issues and

unsuitable for decentralized graph analysis applications.

To tackle these issues, some studies have focused on leveraging

LDP to train Graph Neural Networks [15, 24, 32, 44]. To be specific,

Zhang et al. [44] propose an algorithm for recommendation sys-

tems, which utilizes LDP to prevent users from attribute inference

attacks. LPGNN [32] assumes that node features are private and the

data curator has access to the graph structure, where the scenario

is similar to ours. In this setting, each user perturbs their features

through the Multi-bit mechanism. However, this mechanism intro-

duces much noise to the data that can degrade the performance.

Analogously, [15, 24] also utilize the Multi-bit mechanism to pre-

serve the privacy of node features. Unlike these works, we propose

an improved mechanism to achieve LDP for graph embedding and

provide a detailed utility analysis for our method.

6 Conclusion
In this paper, we propose PrivGE, a privacy-preserving graph em-

bedding framework based on local differential privacy. To this end,

we propose an LDP mechanism called HDS to protect the privacy

of node features. Then, to avoid neighborhood explosion and over-

smoothing problems, we decouple the feature transformation from

graph propagation and employ personalized PageRank as a proxim-

ity measure to learn node representations. Importantly, we perform

a novel and comprehensive theoretical analysis of the privacy and

utility of the PrivGE framework. Extensive experiments conducted

on real-world datasets demonstrate that our proposed method es-

tablishes state-of-the-art performance and achieves better privacy-

utility trade-offs on both node classification and link prediction

tasks. In future work, we plan to extend our work to protect the

privacy of the graph structure as well. Another future direction is to

develop a graph embedding algorithm to protect the edge privacy

for non-attributed graphs that contain only node IDs and edges.

Acknowledgments
This work was partially supported by (i) the National Key Research

and Development Program of China 2021YFB3301301,(ii) NSFC-

Grants U2241211and 62072034. Rong-Hua Li is the corresponding

author of this paper.

1324

CIKM ’24, October 21–25, 2024, Boise, ID, USA Zening Li, Rong-Hua Li, Meihao Liao, Fusheng Jin, and Guoren Wang

References
[1] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling graph neural networks with approximate pagerank. In KDD. 2464–2473.
[2] Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,

Gaurav Aggarwal, and Prateek Jain. 2021. Node-level differentially private graph

neural networks. arXiv preprint arXiv:2111.15521 (2021).
[3] Wei-Yen Day, Ninghui Li, andMin Lyu. 2016. Publishing graph degree distribution

with node differential privacy. In SIGMOD. 123–138.
[4] Laxman Dhulipala, Quanquan C Liu, Sofya Raskhodnikova, Jessica Shi, Julian

Shun, and Shangdi Yu. 2022. Differential privacy from locally adjustable graph al-

gorithms: k-core decomposition, low out-degree ordering, and densest subgraphs.

In FOCS. 754–765.
[5] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry

data privately. In NeurIPS. 3571–3580.
[6] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng Bao, Pan

Zhou, and Hai Jin. 2021. Differentially private triangle counting in large graphs.

TKDE (2021).

[7] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2013. Local privacy

and statistical minimax rates. In FOCS. 429–438.
[8] John C Duchi, Michael I Jordan, and Martin J Wainwright. 2018. Minimax optimal

procedures for locally private estimation. J. Amer. Statist. Assoc. 113, 521 (2018),
182–201.

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-

ing noise to sensitivity in private data analysis. In TCC. 265–284.
[10] Alessandro Epasto, Vahab Mirrokni, Bryan Perozzi, Anton Tsitsulin, and Peilin

Zhong. 2022. Differentially private graph learning via sensitivity-bounded per-

sonalized pagerank. NeurIPS (2022), 22617–22627.
[11] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized aggregatable privacy-preserving ordinal response. In CCS. 1054–1067.
[12] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.

2010. Differentially private combinatorial optimization. In SODA. 1106–1125.
[13] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2021. Locally differen-

tially private analysis of graph statistics. In USENIX Security. 983–1000.
[14] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2022. Communication-

efficient triangle counting under local differential privacy. In USENIX Security.
537–554.

[15] Hongwei Jin and Xun Chen. 2022. Gromov-wasserstein discrepancy with local

differential privacy for distributed structural graphs. In IJCAI. 2115–2121.
[16] Zach Jorgensen, Ting Yu, and Graham Cormode. 2016. Publishing attributed

social graphs with formal privacy guarantees. In SIGMOD. 107–122.
[17] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.

2011. Private analysis of graph structure. VLDB 4, 11 (2011), 1146–1157.

[18] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SICOMP 40, 3 (2011), 793–

826.

[19] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam

Smith. 2013. Analyzing graphs with node differential privacy. In TCC. 457–476.
[20] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[21] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then propagate: Graph neural networks meet personalized pagerank. In

ICLR.
[22] Aashish Kolluri, Teodora Baluta, Bryan Hooi, and Prateek Saxena. 2022. LPGNet:

Link private graph networks for node classification. In CCS. 1813–1827.

[23] Zitao Li, Tianhao Wang, Milan Lopuhaä-Zwakenberg, Ninghui Li, and Boris

Škoric. 2020. Estimating numerical distributions under local differential privacy.

In SIGMOD. 621–635.
[24] Wanyu Lin, Baochun Li, and Cong Wang. 2022. Towards private learning on

decentralized graphs with local differential privacy. TIFS 17 (2022), 2936–2946.
[25] Jingsong Lv, Zhao Li, Hongyang Chen, Yao Qi, and Chunqi Wu. 2022. Path-aware

siamese graph neural network for link prediction. arXiv preprint arXiv:2208.05781
(2022).

[26] Microsoft. 2021. Neural Network Intelligence. https://github.com/microsoft/nni

[27] Dung Nguyen and Anil Vullikanti. 2021. Differentially private densest subgraph

detection. In ICML. 8140–8151.
[28] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity

and sampling in private data analysis. In STOC. 75–84.
[29] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2017.

Generating synthetic decentralized social graphs with local differential privacy.

In CCS. 425–438.
[30] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie

Tang. 2019. Netsmf: Large-scale network embedding as sparse matrix factoriza-

tion. InWWW. 1509–1520.

[31] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed

node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.
[32] Sina Sajadmanesh and Daniel Gatica-Perez. 2021. Locally private graph neural

networks. In CCS. 2130–2145.
[33] Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-

Perez. 2023. Gap: Differentially private graph neural networks with aggregation

perturbation. In USENIX Security.
[34] Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, HuiWang, and Ting Yu.

2019. Analyzing subgraph statistics from extended local views with decentralized

differential privacy. In CCS. 703–717.
[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[36] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2021. Approximate graph propagation. In KDD. 1686–1696.
[37] Ning Wang, Xiaokui Xiao, Yin Yang, Jun Zhao, Siu Cheung Hui, Hyejin Shin,

Junbum Shin, and Ge Yu. 2019. Collecting and analyzing multidimensional data

with local differential privacy. In ICDE. 638–649.
[38] Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, and Hanjing Su. 2021.

Pairwise learning for neural link prediction. arXiv preprint arXiv:2112.02936
(2021).

[39] Depeng Xu, Shuhan Yuan, Xintao Wu, and HaiNhat Phan. 2018. DPNE: Differen-

tially private network embedding. In PAKDD. 235–246.
[40] Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. 2020.

Towards locally differentially private generic graph metric estimation. In ICDE.
1922–1925.

[41] Yuan Yin and Zhewei Wei. 2019. Scalable graph embeddings via sparse transpose

proximities. In KDD. 1429–1437.
[42] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2015. Private release of graph statistics using ladder functions. In

SIGMOD. 731–745.
[43] Sen Zhang and Weiwei Ni. 2019. Graph embedding matrix sharing with differen-

tial privacy. IEEE Access 7 (2019), 89390–89399.
[44] Shijie Zhang, Hongzhi Yin, Tong Chen, Zi Huang, Lizhen Cui, and Xiangliang

Zhang. 2021. Graph embedding for recommendation against attribute inference

attacks. InWWW. 3002–3014.

[45] Xingyi Zhang, Kun Xie, Sibo Wang, and Zengfeng Huang. 2021. Learning based

proximity matrix factorization for node embedding. In KDD. 2243–2253.

1325

https://github.com/microsoft/nni

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Proposed Method
	3.1 Perturbation Module
	3.2 Propagation Module
	3.3 Utility Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Related work
	6 Conclusion
	Acknowledgments
	References

